diff options
author | Mattias Andrée <maandree@operamail.com> | 2014-05-31 12:21:47 +0200 |
---|---|---|
committer | Mattias Andrée <maandree@operamail.com> | 2014-05-31 12:21:47 +0200 |
commit | a92741d61601f607c09973bca8286c6c84a918b5 (patch) | |
tree | 048d46d13891bccd44eb3d243ed0e9ce9e58f8c7 /src | |
parent | update dist (diff) | |
download | blueshift-a92741d61601f607c09973bca8286c6c84a918b5.tar.gz blueshift-a92741d61601f607c09973bca8286c6c84a918b5.tar.bz2 blueshift-a92741d61601f607c09973bca8286c6c84a918b5.tar.xz |
prototype for sunrise equation
Signed-off-by: Mattias Andrée <maandree@operamail.com>
Diffstat (limited to 'src')
-rw-r--r-- | src/solar.py | 78 |
1 files changed, 52 insertions, 26 deletions
diff --git a/src/solar.py b/src/solar.py index ed85b2c..4d0d3f9 100644 --- a/src/solar.py +++ b/src/solar.py @@ -17,11 +17,10 @@ # This module implements algorithms for calculating information about the Sun. -import math +from math import * import time - SOLAR_ELEVATION_SUNSET_SUNRISE = 0.0 ''' :float The Sun's elevation at sunset and sunrise, measured in degrees @@ -183,7 +182,7 @@ def radians(deg): @param deg:float The angle in degrees @return :float The angle in radians ''' - return deg * math.pi / 180 + return deg * pi / 180 def degrees(rad): @@ -193,7 +192,7 @@ def degrees(rad): @param rad:float The angle in radians @return :float The angle in degrees ''' - return rad * 180 / math.pi + return rad * 180 / pi def sun_geometric_mean_longitude(t): @@ -249,9 +248,9 @@ def sun_equation_of_centre(t): @return :float The Sun's equation of the centre, in radians ''' a = sun_geometric_mean_anomaly(t) - rc = math.sin(1 * a) * (-0.000014 * t ** 2 - 0.004817 * t + 1.914602) - rc += math.sin(2 * a) * (-0.000101 * t + 0.019993) - rc += math.sin(3 * a) * 0.000289 + rc = sin(1 * a) * (-0.000014 * t ** 2 - 0.004817 * t + 1.914602) + rc += sin(2 * a) * (-0.000101 * t + 0.019993) + rc += sin(3 * a) * 0.000289 return radians(rc) @@ -274,7 +273,7 @@ def sun_apparent_longitude(t): @return :float The longitude, in radians ''' rc = degrees(sun_real_longitude(t)) - 0.00569 - rc -= 0.00478 * math.sin(radians(-1934.136 * t + 125.04)) + rc -= 0.00478 * sin(radians(-1934.136 * t + 125.04)) return radians(rc) @@ -299,7 +298,7 @@ def corrected_mean_ecliptic_obliquity(t): @return :float The mean obliquity, in radians ''' rc = -1934.136 * t + 125.04 - rc = 0.00256 * math.cos(radians(rc)) + rc = 0.00256 * cos(radians(rc)) rc += degrees(mean_ecliptic_obliquity(t)) return radians(rc) @@ -311,9 +310,9 @@ def solar_declination(t): @param t:float The time in Julian Centuries @return :float The Sun's declination, in radians ''' - rc = math.sin(corrected_mean_ecliptic_obliquity(t)) - rc *= math.sin(sun_apparent_longitude(t)) - return math.asin(rc) + rc = sin(corrected_mean_ecliptic_obliquity(t)) + rc *= sin(sun_apparent_longitude(t)) + return asin(rc) def equation_of_time(t): @@ -327,11 +326,11 @@ def equation_of_time(t): e = earth_orbit_eccentricity(t) m = sun_geometric_mean_anomaly(t) y = corrected_mean_ecliptic_obliquity(t) - y = math.tan(y / 2) ** 2 - rc = y * math.sin(2 * l) - rc += (4 * y * math.cos(2 * l) - 2) * e * math.sin(m) - rc -= 0.5 * y ** 2 * math.sin(4 * l) - rc -= 1.25 * e ** 2 * math.sin(2 * m) + y = tan(y / 2) ** 2 + rc = y * sin(2 * l) + rc += (4 * y * cos(2 * l) - 2) * e * sin(m) + rc -= 0.5 * y ** 2 * sin(4 * l) + rc -= 1.25 * e ** 2 * sin(2 * m) return 4 * degrees(rc) @@ -346,10 +345,10 @@ def hour_angle_from_elevation(latitude, declination, elevation): ''' if elevation == 0: return 0 - rc = math.cos(abs(elevation)) - rc -= math.sin(radians(latitude)) * math.sin(declination) - rc /= math.cos(radians(latitude)) * math.cos(declination) - rc = math.acos(rc) + rc = cos(abs(elevation)) + rc -= sin(radians(latitude)) * sin(declination) + rc /= cos(radians(latitude)) * cos(declination) + rc = acos(rc) return -rc if (rc < 0) == (elevation < 0) else rc; @@ -362,10 +361,10 @@ def elevation_from_hour_angle(latitude, declination, hour_angle): @param hour_angle:float The solar hour angle, in degrees @return :float The Sun's elevation, in degrees ''' - rc = math.cos(radians(latitude)) - rc *= math.cos(hour_angle) * math.cos(declination) - rc += math.sin(radians(latitude)) * math.sin(declination) - return math.asin(rc) + rc = cos(radians(latitude)) + rc *= cos(hour_angle) * cos(declination) + rc += sin(radians(latitude)) * sin(declination) + return asin(rc) def time_of_solar_noon(t, longitude): @@ -438,7 +437,13 @@ def solar_elevation(latitude, longitude, t = None): return degrees(rc) -# Reversing `solar_elevation` is unfeasible, so we iterative methods +# TODO test, document and demo +def have_sunrise_and_sunset(latitude, t = None): + t = julian_centuries() if t is None else t + d = degrees(solar_declination(t)) + latitude = abs(latitude) + return (-90 + d < latitude < 90 - d) or (-90 - d < latitude < 90 + d) + def future_past_elevation(delta, latitude, longitude, elevation, t = None): ''' @@ -508,3 +513,24 @@ def past_elevation(latitude, longitude, elevation, t = None): ''' return future_past_elevation(0.01 / -2000, latitude, longitude, elevation, t) + +# TODO: This algorithm is inprecise, gives an incorrent sunrise and I do not fully know its behaviour +def sunrise_equation(latitude, longitude, t = None): + j_cent = julian_centuries() if t is None else t + j_date = julian_centuries_to_julian_day(j_cent) + j_cycle = int(j_date - 2451545.0009 - longitude / 360 + 0.5) + approx_solar_noon = 451545.0009 + longitude / 360 + j_cycle + solar_mean_anomaly = int(357.5291 + 0.98560028 * (j_cycle - 2451545)) % 360 + equation_of_centre = 1.9148 * sin(1 * solar_mean_anomaly) + equation_of_centre += 0.0200 * sin(2 * solar_mean_anomaly) + equation_of_centre += 0.0003 * sin(3 * solar_mean_anomaly) + ecliptic_longitude = (solar_mean_anomaly + 102.9372 + equation_of_centre + 180) % 360 + solar_transit = approx_solar_noon + 0.0053 * sin(solar_mean_anomaly) - 0.0069 * sin(2 * ecliptic_longitude) + declination = asin(sin(ecliptic_longitude) * sin(radians(23.45))) + hour_angle = sin(radians(-0.83)) + hour_angle -= sin(latitude) * sin(declination) + hour_angle /= cos(latitude) * cos(declination) + hour_angle = degrees(acos(hour_angle)) + sunset = 2451545.0009 + (hour_angle + longitude) / 360 + j_cycle + solar_transit - approx_solar_noon + sunrise = 2 * solar_transit - sunset + return (julian_day_to_julian_centuries(sunset), julian_day_to_julian_centuries(sunrise)) |