diff options
author | Mattias Andrée <maandree@operamail.com> | 2014-04-04 21:34:54 +0200 |
---|---|---|
committer | Mattias Andrée <maandree@operamail.com> | 2014-04-04 21:34:54 +0200 |
commit | 57290a4386f83479786deba0a8d29ff06e82cca9 (patch) | |
tree | 2354a31979942d74ed8201bbf68877d1b94f06be /src | |
parent | fix interpolation (diff) | |
download | blueshift-57290a4386f83479786deba0a8d29ff06e82cca9.tar.gz blueshift-57290a4386f83479786deba0a8d29ff06e82cca9.tar.bz2 blueshift-57290a4386f83479786deba0a8d29ff06e82cca9.tar.xz |
separate halo eliminate + add cubing interpolation
Signed-off-by: Mattias Andrée <maandree@operamail.com>
Diffstat (limited to '')
-rw-r--r-- | src/aux.py | 131 |
1 files changed, 99 insertions, 32 deletions
@@ -75,6 +75,57 @@ def linearly_interpolate_ramp(r, g, b): # TODO demo and document this return (R, G, B) +def cubicly_interpolate_ramp(r, g, b): # TODO test, demo and document this + ''' + Interpolate ramps to the size of the output axes using cubic Hermite spline + + @param r:list<float> The red colour curves + @param g:list<float> The green colour curves + @param b:list<float> The blue colour curves + @return :(r:list<float>, g:list<float>, b:list<float>) The input parameters extended to sizes of `o_size`, + or their original size, whatever is larger. + ''' + C = lambda c : c[:] if len(c) >= o_size else ([None] * o_size) + R, G, B = C(r), C(g), C(b) + # Basis functions + h00 = lambda t : (1 + 2 * t) * (1 - t) ** 2 + h01 = lambda t : t * (1 - t) ** 2 + h10 = lambda t : t ** 2 * (3 - 2 * t) + h11 = lambda t : t ** 2 * (t - 1) + def tangent(values, index, last): + ''' + Calculate the tangent at a point + + @param values:list<float> Mapping from points to values + @param index:int The point + @param last:int The last point + @return :float The tangent at the point `index` + ''' + if last == 0: return 0 + if index == 0: return values[1] - values[0] + if index == last: return values[last] - values[last - 1] + return (values[index + 1] - values[index - 1]) / 2 + # Interpolate each curve + for small, large in ((r, R), (g, G), (b, B)): + small_, large_ = len(small) - 1, len(large) - 1 + # Only interpolate if scaling up + if large_ > small_: + for i in range(len(large)): + # Scaling + j = i * small_ / large_ + # Floor, weight, ceiling + j, w, k = int(j), j % 1, min(int(j) + 1, small_) + # Points + pj, pk = small[j], small[k] + # Tangents + mj, mk = tangent(small, j, small_), tangent(small, k, small_) + # Interpolation + large[i] = h00(w) * pj + h10(w) * mj + h01(w) * pk + h11(w) * mk + ## Check local monotonicity + eliminate_halos(r, g, b, R, G, B) + return (R, G, B) + + def polynomially_interpolate_ramp(r, g, b): # TODO Speedup, demo and document this ''' Polynomially interpolate ramps to the size of the output axes. @@ -91,7 +142,7 @@ def polynomially_interpolate_ramp(r, g, b): # TODO Speedup, demo and document th or their original size, whatever is larger. ''' C = lambda c : c[:] if len(c) >= o_size else ([None] * o_size) - R, G, B, linear = C(r), C(g), C(b), None + R, G, B, linear = C(r), C(g), C(b), [None] for ci, (small, large) in enumerate(((r, R), (g, G), (b, B))): small_, large_ = len(small) - 1, len(large) - 1 # Only interpolate if scaling up @@ -117,40 +168,56 @@ def polynomially_interpolate_ramp(r, g, b): # TODO Speedup, demo and document th f = lambda x : sum(A[i] * x ** i for i in range(n)) ## Apply interpolation large[:] = [f(x / large_) for x in range(len(large))] - - ## Check local monotonicity - for i in range(small_): - # Small curve - x1, x2, y1, y2 = i, i + 1, small[i], small[i + 1] - # Scaled up curve - X1, X2 = int(x1 * large_ / small_), int(x2 * large_ / small_) - Y1, Y2 = large[X1], large[X2] - monotone = True - if y2 == y1: - # Flat part, just make sure it is flat in the interpolation - # without doing a check before. - for x in range(X1, X2 + 1): - large[x] = y1 - elif y2 > y1: - # Increasing - monotone = all(map(lambda x : large[x + 1] >= large[x], range(X1, X2))) and (Y2 > Y1) - elif y2 < y1: - # Decreasing - monotone = all(map(lambda x : large[x + 1] <= large[x], range(X1, X2))) and (Y2 < Y1) - # If the monotonicity has been broken, - if not monotone: - print('failed') - # replace the partition with linear interpolation. - # If linear interpolation has not yet been calculated, - if linear is None: - # then calculate it. - linear = linearly_interpolate_ramp(r, g, b) - # Extract the linear interpolation for the current colour curve, - # and replace the local partition with the linear interpolation. - large[X1 : X2 + 1] = linear[ci][X1 : X2 + 1] + ## Check local monotonicity + eliminate_halos(r, g, b, R, G, B) return (R, G, B) +def eliminate_halos(r, g, b, R, G, B): # TODO demo and document this + ''' + Eliminate haloing effects in interpolations + + @param r:list<float> The original red curve + @param g:list<float> The original green curve + @param b:list<float> The original blue curve + @param R:list<float> The scaled up red curve + @param G:list<float> The scaled up green curve + @param B:list<float> The scaled up blue curve + ''' + linear = None + for ci, (small, large) in enumerate(((r, R), (g, G), (b, B))): + small_, large_ = len(small) - 1, len(large) - 1 + ## Check local monotonicity + for i in range(small_): + # Small curve + x1, x2, y1, y2 = i, i + 1, small[i], small[i + 1] + # Scaled up curve + X1, X2 = int(x1 * large_ / small_), int(x2 * large_ / small_) + Y1, Y2 = large[X1], large[X2] + monotone = True + if y2 == y1: + # Flat part, just make sure it is flat in the interpolation + # without doing a check before. + for x in range(X1, X2 + 1): + large[x] = y1 + elif y2 > y1: + # Increasing + monotone = all(map(lambda x : large[x + 1] >= large[x], range(X1, X2))) and (Y2 > Y1) + elif y2 < y1: + # Decreasing + monotone = all(map(lambda x : large[x + 1] <= large[x], range(X1, X2))) and (Y2 < Y1) + # If the monotonicity has been broken, + if not monotone: + # replace the partition with linear interpolation. + # If linear interpolation has not yet been calculated, + if linear is None: + # then calculate it. + linear = linearly_interpolate_ramp(r, g, b) + # Extract the linear interpolation for the current colour curve, + # and replace the local partition with the linear interpolation. + large[X1 : X2 + 1] = linear[ci][X1 : X2 + 1] + + def functionise(rgb): ''' Convert a three colour curves to a function that applies those adjustments |