summaryrefslogtreecommitdiffstats
path: root/src/__main__.py
diff options
context:
space:
mode:
authorMattias Andrée <maandree@operamail.com>2014-02-13 03:56:43 +0100
committerMattias Andrée <maandree@operamail.com>2014-02-13 03:56:43 +0100
commitbd6427412a85741be7ef7846bae228c79cbfcb22 (patch)
tree79df70bb15bc23de528fd11eac670d81ed9b427f /src/__main__.py
parentadd sigmoid (diff)
downloadblueshift-bd6427412a85741be7ef7846bae228c79cbfcb22.tar.gz
blueshift-bd6427412a85741be7ef7846bae228c79cbfcb22.tar.bz2
blueshift-bd6427412a85741be7ef7846bae228c79cbfcb22.tar.xz
colour temperature
Signed-off-by: Mattias Andrée <maandree@operamail.com>
Diffstat (limited to 'src/__main__.py')
-rwxr-xr-xsrc/__main__.py219
1 files changed, 190 insertions, 29 deletions
diff --git a/src/__main__.py b/src/__main__.py
index 722f879..92b8cdc 100755
--- a/src/__main__.py
+++ b/src/__main__.py
@@ -16,10 +16,20 @@
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import math
+from colour import *
-r_curve = [i / 255 for i in range(256)]
-g_curve = [i / 255 for i in range(256)]
-b_curve = [i / 255 for i in range(256)]
+
+DATADIR = '.'
+
+i_size = 2 ** 8
+o_size = 2 ** 16
+r_curve = [i / (i_size - 1) for i in range(i_size)]
+g_curve = [i / (i_size - 1) for i in range(i_size)]
+b_curve = [i / (i_size - 1) for i in range(i_size)]
+clip_result = True
+
+cmf_2deg_cache = None
+cmf_10deg_cache = None
def curves(r, g, b):
@@ -34,26 +44,132 @@ def curves(r, g, b):
return ((r_curve, r), (g_curve, g), (b_curve, b))
-def sigmoid(r, g, b):
+def series_d(temperature):
'''
- Apply S-curve correction on the colour curves
+ Calculate the colour for a blackbody temperature
- @param r:float The sigmoid parameter for the red curve
- @param g:float The sigmoid parameter for the green curve
- @param b:float The sigmoid parameter for the blue curve
+ @param temperature:float The blackbody temperature in kelvins, must be inside [4000, 7000]
+ @return :(float, float, float) The red, green and blue components of the white point
'''
- for (curve, level) in curves(r, g, b):
- if not level == 1.0:
- for i in range(256):
- try:
- curve[i] = 0.5 - math.log(1 / curve[i] - 1) / level
- except:
- curve[i] = 0;
+ x = 0
+ ks = ((0.244063, 0), (0.09911, 1), (2.9678, 2), (-4.6070, 3))
+ if temperature > 7000:
+ ks = ((0.237040, 0), (0.24748, 1), (1.9018, 2), (-2.0064, 3))
+ for (k, d) in ks:
+ x += k * 10 ** (d * 3) / temperature ** d
+ y = 2.870 * x - 3.000 * x ** 2 - 0.275
+ return to_srgb(x, y, 1.0)
+
+def simple_whitepoint(temperature):
+ '''
+ Calculate the colour for a blackbody temperature using a simple, but inaccurate, algorithm
+
+ @param temperature:float The blackbody temperature in kelvins, not guaranteed for values outside [1000, 40000]
+ @return :(float, float, float) The red, green and blue components of the white point
+ '''
+ r, g, b = 1, 1, 1
+ temp = temperature / 100
+ if temp > 66:
+ temp -= 60
+ r = 1.292936186 * temp ** 0.1332047592
+ g = 1.129890861 * temp ** -0.0755148492
+ else:
+ g = 0.390081579 * math.log(temp) - 0.631841444
+ if temp <= 19:
+ b = 0
+ elif temp < 66:
+ b = 0.543206789 * math.log(temp - 10) - 1.196254089
+ return (r, g, b)
+
+def cmf_2deg(temperature):
+ '''
+ Calculate the colour for a blackbody temperature using raw CIE 1931 2 degree CMF data with interpolation
+
+ @param temperature:float The blackbody temperature in kelvins, clipped to [1000, 40000]
+ @return :(float, float, float) The red, green and blue components of the white point
+ '''
+ if cmf_2deg_cache is None:
+ with open(DATADIR + '/2deg', 'rb') as file:
+ cmf_2deg_cache = file.read()
+ cmf_2deg_cache.decode('utf-8', 'error').split('\n')
+ cmf_2deg_cache = [[float(x) for x in x_y.split(' ')] for x_y in cmf_2deg_cache]
+ temperature = min(max(0, temperature), 1000)
+ x, y = 0, 0
+ if (temp % 100) == 0:
+ (x, y) = temperature[(temp - 1000) // 100]
+ else:
+ temp -= 1000
+ (x1, y1) = temperature[temp // 100]
+ (x2, y2) = temperature[temp // 100 + 1]
+ temp = (temp % 100) / 100
+ x = x1 * temp + x2 * (1 - temp)
+ y = y1 * temp + y2 * (1 - temp)
+ return to_srgb(x, y, 1.0)
+
+def cmf_10deg(temperature):
+ '''
+ Calculate the colour for a blackbody temperature using raw CIE 1964 10 degree CMF data with interpolation
+
+ @param temperature:float The blackbody temperature in kelvins, clipped to [1000, 40000]
+ @return :(float, float, float) The red, green and blue components of the white point
+ '''
+ if cmf_2deg_cache is None:
+ with open(DATADIR + '/10deg', 'rb') as file:
+ cmf_2deg_cache = file.read()
+ cmf_2deg_cache.decode('utf-8', 'error').split('\n')
+ cmf_2deg_cache = [[float(x) for x in x_y.split(' ')] for x_y in cmf_2deg_cache]
+ temperature = min(max(0, temperature), 1000)
+ x, y = 0, 0
+ if (temp % 100) == 0:
+ (x, y) = temperature[(temp - 1000) // 100]
+ else:
+ temp -= 1000
+ (x1, y1) = temperature[temp // 100]
+ (x2, y2) = temperature[temp // 100 + 1]
+ temp = (temp % 100) / 100
+ x = x1 * temp + x2 * (1 - temp)
+ y = y1 * temp + y2 * (1 - temp)
+ return to_srgb(x, y, 1.0)
+
+
+def temperature(temperature, algorithm, linear_rgb = True):
+ '''
+ Change colour temperature according to the CIE illuminant series D
+
+ @param temperature:float The blackbody temperature in kelvins
+ @param algorithm:(float)→(float, float, float) Algorithm for calculating a white point, for example `series_d` or `simple_whitepoint`
+ @param linear_rgb:[bool] Whether to use linear RGB, otherwise sRG is used
+ '''
+ if temperature == 6500:
+ return
+ (r, g, b) = algorithm(temperature)
+ if linear_rgb:
+ for curve in (r_curve, g_curve, b_curve):
+ for i in range(i_size):
+ R, G, B = r_curve[i], g_curve[i], b_curve[i]
+ (R, G, B) = standard_to_linear(R, G, B)
+ r_curve[i], g_curve[i], b_curve[i] = R, G, B
+ rgb_brightness(r, g, b)
+ if linear_rgb:
+ for curve in (r_curve, g_curve, b_curve):
+ for i in range(i_size):
+ R, G, B = r_curve[i], g_curve[i], b_curve[i]
+ (R, G, B) = linear_to_standard(R, G, B)
+ r_curve[i], g_curve[i], b_curve[i] = R, G, B
+def divide_by_maximum():
+ '''
+ Divide all colour components by the value of the most prominent colour component for each colour
+ '''
+ for i in range(i_size):
+ m = max([abs(x) for x in (r_curve[i], g_curve[i], b_curve[i])])
+ if m != 0:
+ for curve in (r_curve, g_curve, b_curve):
+ curve[i] /= m
-def contrast(r, g, b):
+def rgb_contrast(r, g, b):
'''
- Apply contrast correction on the colour curves
+ Apply contrast correction on the colour curves using sRGB
@param r:float The contrast parameter for the red curve
@param g:float The contrast parameter for the green curve
@@ -61,12 +177,23 @@ def contrast(r, g, b):
'''
for (curve, level) in curves(r, g, b):
if not level == 1.0:
- for i in range(256):
+ for i in range(i_size):
curve[i] = (curve[i] - 0.5) * level + 0.5
-def brightness(r, g, b):
+def cie_contrast(level):
'''
- Apply brightness correction on the colour curves
+ Apply contrast correction on the colour curves using CIE XYZ
+
+ @param level:float The brightness parameter
+ '''
+ if not level == 1.0:
+ for i in range(i_size):
+ (x, y, Y) = to_ciexyy(r_curve[i], g_curve[i], b_curve[i])
+ (r_curve[i], g_curve[i], b_curve[i]) = to_rgb(x, y, Y * level)
+
+def rgb_brightness(r, g, b):
+ '''
+ Apply brightness correction on the colour curves using sRGB
@param r:float The brightness parameter for the red curve
@param g:float The brightness parameter for the green curve
@@ -74,9 +201,20 @@ def brightness(r, g, b):
'''
for (curve, level) in curves(r, g, b):
if not level == 1.0:
- for i in range(256):
+ for i in range(i_size):
curve[i] *= level
+def cie_brightness(level):
+ '''
+ Apply brightness correction on the colour curves using CIE XYZ
+
+ @param level:float The brightness parameter
+ '''
+ if not level == 1.0:
+ for i in range(i_size):
+ (x, y, Y) = to_ciexyy(r_curve[i], g_curve[i], b_curve[i])
+ (r_curve[i], g_curve[i], b_curve[i]) = to_rgb(x, y, Y * level)
+
def gamma(r, g, b):
'''
Apply gamma correction on the colour curves
@@ -87,31 +225,54 @@ def gamma(r, g, b):
'''
for (curve, level) in curves(r, g, b):
if not level == 1.0:
- for i in range(256):
+ for i in range(i_size):
curve[i] **= level
+
+def sigmoid(r, g, b):
+ '''
+ Apply S-curve correction on the colour curves
+
+ @param r:float? The sigmoid parameter for the red curve
+ @param g:float? The sigmoid parameter for the green curve
+ @param b:float? The sigmoid parameter for the blue curve
+ '''
+ for (curve, level) in curves(r, g, b):
+ if level is not None:
+ for i in range(i_size):
+ try:
+ curve[i] = 0.5 - math.log(1 / curve[i] - 1) / level
+ except:
+ curve[i] = 0;
def clip():
'''
Clip all values belowed the actual minimum and above actual maximums
'''
for curve in (r_curve, g_curve, b_curve):
- for i in range(256):
+ for i in range(i_size):
curve[i] = min(max(0.0, curve[i]), 1.0)
-sigmoid(1.0, 1.0, 1.0)
+temperature(6500, series_d, True)
+divide_by_maximum()
+temperature(6500, simple_whitepoint, True)
clip()
-contrast(1.0, 1.0, 1.0)
-brightness(1.0, 1.0, 1.0)
+rgb_contrast(1.0, 1.0, 1.0)
+cie_contrast(1.0)
+rgb_brightness(1.0, 1.0, 1.0)
+cie_brightness(1.0)
gamma(1.0, 1.0, 1.0)
+sigmoid(None, None, None)
clip()
for curve in (r_curve, g_curve, b_curve):
- for i in range(256):
- curve[i] = int(curve[i] * 65535 + 0.5)
+ for i in range(i_size):
+ curve[i] = int(curve[i] * (o_size - 1) + 0.5)
+ if clip_result:
+ curve[i] = min(max(0, curve[i]), (o_size - 1))
print(r_curve)
print(g_curve)
print(b_curve)
-print(Math.e)
+