summaryrefslogtreecommitdiffstats
path: root/examples/comperhensive_example
diff options
context:
space:
mode:
authorMattias Andrée <maandree@operamail.com>2014-02-19 00:26:32 +0100
committerMattias Andrée <maandree@operamail.com>2014-02-19 00:26:32 +0100
commitfae33aa521f24fa9e777812632ba3bf2f4907c81 (patch)
tree7d2adac6165e84e5835a351d66ca5e1094e55e76 /examples/comperhensive_example
parentupdate todo (diff)
downloadblueshift-fae33aa521f24fa9e777812632ba3bf2f4907c81.tar.gz
blueshift-fae33aa521f24fa9e777812632ba3bf2f4907c81.tar.bz2
blueshift-fae33aa521f24fa9e777812632ba3bf2f4907c81.tar.xz
comperhensive_example => comperhensive
Signed-off-by: Mattias Andrée <maandree@operamail.com>
Diffstat (limited to 'examples/comperhensive_example')
-rw-r--r--examples/comperhensive_example275
1 files changed, 0 insertions, 275 deletions
diff --git a/examples/comperhensive_example b/examples/comperhensive_example
deleted file mode 100644
index 17b67bf..0000000
--- a/examples/comperhensive_example
+++ /dev/null
@@ -1,275 +0,0 @@
-# -*- python -*-
-
-# This example is complete with exceptions for less normal colour
-# curve modifiers: nothing else than CIE 1964 10 degree CMF for
-# colour temperature, not use of termporarly linear RGB curves,
-# negative image, sigmoid correction, or free function modifier.
-
-
-# Geographical coodinates.
-# (KTH computer laboratories in this example.)
-latitude, longitude = 59.3472, 18.0728
-
-# Custom dayness by time settings
-time_alpha = [['02:00', 0], ['08:00', 1], ['22:00', 1]]
-
-
-def by_time():
- '''
- Dayness calculation using time
- '''
- if isinstance(time_alpha[0][0], str):
- for i in range(len(time_alpha)):
- hh = [float(x) for x in time_alpha[i][0].split(':')]
- hh = sum([hh[j] / 60 ** j for j in range(len(hh))])
- time_alpha[i][0] = hh
- now = datetime.datetime.now()
- hh = now.hour + now.minute / 60 + now.second / 60 ** 2
- for i in range(len(time_alpha)):
- (a, av) = time_alpha[i]
- (b, bv) = time_alpha[(i + 1) % len(time_alpha)]
- if a < hh: a += 24
- if b < hh: b += 24
- if a <= hh <= b:
- hh = (hh - a) / (b - a)
- return av * (1 - hh) + bv * hh
- return 1 # Error in `time_alpha` (probably)
-
-
-# Keep uncomment to use solar position
-get_dayness = lambda : sun(latitude, longitude)
-# Uncomment to use time of day
-#get_dayness = by_time
-# Uncomment if you do not want continuous mode, high night values are used
-#get_dayness = None
-
-
-# The (zero-based) index of the monitors (CRTC:s) to apply
-# settings to. An empty list means that all monitors are used,
-# but all monitors will have the same settings.
-monitors = []
-
-
-# The following settings are lists. This is to allow you to
-# use different settings on different monitors. For example,
-# `gamma_red_day = [1]`, this means that during high day, the
-# red gamma is 1 on all monitors. But if we change this to
-# `gamma_red_day = [1.0, 1.1]`, the first monitor will have
-# the red gamma set to 1,0 and the second monitor will have
-# the red gamma set to 1,1. If you have more monitors than
-# used in the settings modulo division will be used. For
-# instance, if you have four monitors, the third monitor will
-# have the same settings as the first monitor, and the fourth
-# monitor will have the same settings as the second monitor.
-
-
-# Colour temperature at high day and high night, respectively.
-temperature_day, temperature_night = [6500], [3700]
-
-
-# Colour brightness at high day and high night, respectively.
-# This setting uses the CIE xyY colour space for calculating values.
-brightness_day, brightness_night = [1], [1]
-
-# Colour brightness of the red, green and blue components,
-# respectively, at high day and high night, respectively.
-# This settings uses the sRGB colour space for calculating values.
-brightness_red_day, brightness_red_night = [1], [1]
-brightness_green_day, brightness_green_night = [1], [1]
-brightness_blue_day, brightness_blue_night = [1], [1]
-
-
-# Colour contrast at high day and high night, respectively.
-# This setting uses the CIE xyY colour space for calculating values.
-contrast_day, contrast_night = [1], [1]
-
-# Colour contrast of the red, green and blue components,
-# respectively, at high day and high night, respectively.
-# This settings uses the sRGB colour space for calculating values.
-contrast_red_day, contrast_red_night = [1], [1]
-contrast_green_day, contrast_green_night = [1], [1]
-contrast_blue_day, contrast_blue_night = [1], [1]
-
-
-# Note: brightness and contrast is not intended for colour
-# calibration, it should be calibrated on the monitors'
-# control panels.
-
-
-# Gamma correction for the red, green and blue components, respectively,
-# at high day, high night and monitor default, respectively.
-# This settings uses the sRGB colour space for calculating values.
-gamma_red_day, gamma_red_night, gamma_red_default = [1], [1], [1]
-gamma_green_day, gamma_green_night, gamma_green_default = [1], [1], [1]
-gamma_blue_day, gamma_blue_night, gamma_blue_default = [1], [1], [1]
-
-
-# Note: gamma is supposted to be static, it purpose is to
-# correct the colours on the monitors the monitor's gamma
-# is exactly 2,2 and the colours look correct in relation
-# too each other. It is supported to have different settings
-# at day and night because there are no technical limitings
-# and it can presumable increase readability on text when
-# the colour temperature is low.
-
-
-monitor_controller = lambda : randr(*monitors)
-'''
-:()→void Function used by Blueshift on exit to apply reset colour curves, if using preimplemented `reset`
-'''
-
-
-def periodically(year, month, day, hour, minute, second, weekday, fade):
- '''
- :(int, int, int, int, int, int, int, float?)?→void Place holder for periodically invoked function
-
- Invoked periodically
-
- If you want to control at what to invoke this function next time
- you can set the value of the global variable `wait_period` to the
- number of seconds to wait before invoking this function again.
- The value does not need to be an integer.
-
- @param year:int The year
- @param month:int The month, 1 = January, 12 = December
- @param day:int The day, minimum value is 1, probable maximum value is 31 (*)
- @param hour:int The hour, minimum value is 0, maximum value is 23
- @param minute:int The minute, minimum value is 0, maximum value is 59
- @param second:int The second, minimum value is 0, probable maximum value is 60 (**)
- @param weekday:int The weekday, 1 = Monday, 7 = Sunday
- @param fade:float? Blueshift can use this function to fade into a state when it start
- or exits. `fade` can either be negative, zero or positive or `None`,
- but the magnitude of value cannot exceed 1. When Blueshift starts,
- the this function will be invoked multiple with the time parameters
- of the time it is invoked and each time `fade` will increase towards
- 1, starting at 0, when the value is 1, the settings should be applied
- to 100 %. After this this function will be invoked once again with
- `fade` being `None`. When Blueshift exits the same behaviour is used
- except, `fade` decrease towards -1 but start slightly below 0, when
- -1 is reached all settings should be normal. Then Blueshift will NOT
- invoke this function with `fade` being `None`, instead it will by
- itself revert all settings and quit.
-
- (*) Can be exceeded if the calendar system is changed, like in 1712-(02)Feb-30
- (**) See https://en.wikipedia.org/wiki/Leap_second
- '''
- dayness = get_dayness()
-
- # Help functions for colour interpolation
- interpol = lambda _day, _night : _day[m % len(_day)] * dayness + _night[m % len(_night)] * (1 - dayness)
- purify = lambda current, pure : current * alpha + pure * (1 - alpha)
-
- for m in [0] if len(monitors) == 0 else monitors:
- temperature_ = interpol(temperature_day, temperature_night)
- brightness_ = interpol(brightness_day, brightness_night)
- brightness_red_ = interpol(brightness_red_day, brightness_red_night)
- brightness_green_ = interpol(brightness_green_day, brightness_green_night)
- brightness_blue_ = interpol(brightness_blue_day, brightness_blue_night)
- contrast_ = interpol(contrast_day, contrast_night)
- contrast_red_ = interpol(contrast_red_day, contrast_red_night)
- contrast_green_ = interpol(contrast_green_day, contrast_green_night)
- contrast_blue_ = interpol(contrast_blue_day, contrast_blue_night)
- gamma_red_ = interpol(gamma_red_day, gamma_red_night)
- gamma_green_ = interpol(gamma_green_day, gamma_green_night)
- gamma_blue_ = interpol(gamma_blue_day, gamma_blue_night)
- if fade is not None:
- alpha = abs(fade)
- temperature_ = purify(temperature_, 6500)
- brightness_ = purify(brightness_, 1)
- brightness_red_ = purify(brightness_red_, 1)
- brightness_green_ = purify(brightness_green_, 1)
- brightness_blue_ = purify(brightness_blue_, 1)
- contrast_ = purify(contrast_, 1)
- contrast_red_ = purify(contrast_red_, 1)
- contrast_green_ = purify(contrast_green_, 1)
- contrast_blue_ = purify(contrast_blue_, 1)
- gamma_red_ = purify(gamma_red_, gamma_red_default [m % len(gamma_red_default)])
- gamma_green_ = purify(gamma_green_, gamma_green_default[m % len(gamma_green_default)])
- gamma_blue_ = purify(gamma_blue_, gamma_blue_default [m % len(gamma_blue_default)])
-
- # Remove settings from last run.
- start_over()
-
- # Apply colour temperature using raw CIE 1964 10 degree CMF data with interpolation.
- temperature(temperature_, lambda t : divide_by_maximum(cmf_10deg(t)))
-
- # Apply colour brightness using the CIE xyY colour space.
- cie_brightness(brightness_)
- # Apply colour brightness using the sRGB colour space.
- # If we only used one parameter, it would be applied to all colour components.
- rgb_brightness(brightness_red_, brightness_green_, brightness_blue_)
-
- # Apply colour contrast using the CIE xyY colour space.
- cie_contrast(contrast_)
- # Apply colour contrast using the sRGB colour space.
- # If we only used one parameter, it would be applied to all colour components.
- rgb_contrast(contrast_red_, contrast_green_, contrast_blue_)
-
- # Clip colour curves to fit [0, 1] to avoid errors by complex numbers.
- clip()
-
- # Apply gamma correction to monitor.
- gamma(gamma_red_, gamma_green_, gamma_blue_)
-
- # Flush settings to monitor.
- if len(monitors) == 0:
- randr()
- else:
- randr(m)
-
-
-def reset():
- '''
- Invoked to reset the displays
- '''
- for m in [0] if len(monitors) == 0 else monitors:
- gamma_red_ = gamma_red_default [m % len(gamma_red_default)]
- gamma_green_ = gamma_green_default[m % len(gamma_green_default)]
- gamma_blue_ = gamma_blue_default [m % len(gamma_blue_default)]
-
- # Remove settings from last run.
- start_over()
-
- # Apply gamma correction to monitor.
- gamma(gamma_red_, gamma_green_, gamma_blue_)
-
- # Flush settings to monitor.
- if len(monitors) == 0:
- randr()
- else:
- randr(m)
-
-
-if get_dayness is not None:
- # Set transition time, 0 on high day and 5 seconds on high night
- fadein_time = 5 * (1 - get_dayness())
- # Do 10 changes per second
- fadein_steps = fadein_time * 10
-
- # Transition on exit in the same way, calculated on exit
- old_signal_SIGTERM = signal_SIGTERM
- def signal_SIGTERM(signum, frame):
- global fadeout_time, fadeout_steps
- fadeout_time = 5 * (1 - get_dayness())
- fadeout_steps = fadeout_time * 10
- old_signal_SIGTERM(signum, frame)
-else:
- # Do not use continuous mode
- get_dayness = lambda : 0
- def apply(fade):
- t = datetime.datetime.now()
- wd = t.isocalendar()[2]
- periodically(t.year, t.month, t.day, t.hour, t.minute, t.second, wd, fade)
- if not panicgate:
- signal.signal(signal.SIGTERM, signal_SIGTERM)
- trans = 0
- apply(trans)
- while running:
- time.sleep(0.1)
- if trans >= 1:
- break
- trans += 0.05
- apply(trans)
- apply(None)
- periodically = None
-