diff options
author | Mattias Andrée <maandree@operamail.com> | 2014-02-16 07:42:53 +0100 |
---|---|---|
committer | Mattias Andrée <maandree@operamail.com> | 2014-02-16 07:42:53 +0100 |
commit | b1252280d48af6b926b5ae418d8fd496549d6cc4 (patch) | |
tree | 4c5481861fccb4eea6a8806b2f5e63f23d9877c2 | |
parent | m (diff) | |
download | blueshift-b1252280d48af6b926b5ae418d8fd496549d6cc4.tar.gz blueshift-b1252280d48af6b926b5ae418d8fd496549d6cc4.tar.bz2 blueshift-b1252280d48af6b926b5ae418d8fd496549d6cc4.tar.xz |
solar functions
Signed-off-by: Mattias Andrée <maandree@operamail.com>
-rwxr-xr-x | src/__main__.py | 1 | ||||
-rw-r--r-- | src/solar.py | 159 |
2 files changed, 160 insertions, 0 deletions
diff --git a/src/__main__.py b/src/__main__.py index 1170aa8..400c675 100755 --- a/src/__main__.py +++ b/src/__main__.py @@ -20,6 +20,7 @@ import time import signal import datetime +from solar import * from curve import * from colour import * from monitor import * diff --git a/src/solar.py b/src/solar.py new file mode 100644 index 0000000..a0620bc --- /dev/null +++ b/src/solar.py @@ -0,0 +1,159 @@ +#!/usr/bin/env python3 + +# Copyright © 2014 Mattias Andrée (maandree@member.fsf.org) +# +# This program is free software: you can redistribute it and/or modify +# it under the terms of the GNU Affero General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU Affero General Public License for more details. +# +# You should have received a copy of the GNU Affero General Public License +# along with this program. If not, see <http://www.gnu.org/licenses/>. +import math +import time + + +def julian_day_to_epoch(t): + return (jd - 2440587.5) * 86400.0 + +def epoch_to_julian_day(t): + return t / 86400.0 + 2440587.5 + +def julian_day_to_julian_centuries(t): + return (t - 2451545.0) / 36525.0 + +def julian_centuries_to_julian_day(t): + return t * 36525.0 + 2451545.0 + +def epoch_to_julian_centuries(t): + return julian_day_to_julian_centuries(epoch_to_julian_day(t)) + +def julian_centuries_to_epoch(t): + return julian_day_to_epoch(julian_centuries_to_julian_day(t)) + +def epoch(): + return time.time() + +def julian_day(): + return epoch_to_julian_day(epoch()) + +def julian_centuries(): + return epoch_to_julian_centuries(epoch()) + +def radians(deg): + return deg * math.pi / 180 + +def degrees(rad): + return rad * 180 / math.pi + +def sun_geometric_mean_longitude(t): + return radians((0.0003032 * t ** 2 + 36000.76983 * t + 280.46646) % 360) + +def sun_geometric_mean_anomaly(t): + return radians(-0.0001537 * t ** 2 + 35999.05029 * t + 357.52911) + +def earth_orbit_eccentricity(t): + return -0.0000001267 * t ** 2 - 0.000042037 * t + 0.016708634 + +def sun_equation_of_centre(t): + a = sun_geometric_mean_anomaly(t) + rc = math.sin(1 * a) * (-0.000014 * t ** 2 - 0.004817 * t + 1.914602) + rc += math.sin(2 * a) * (-0.000101 * t + 0.019993) + rc += math.sin(3 * a) * 0.000289 + return radians(rc) + +def sun_real_longitude(t): + rc = sun_geometric_mean_longitude(t) + return rc + sun_equation_of_centre(t) + +def sun_apparent_longitude(t): + rc = degrees(sun_real_longitude(t)) - 0.00569 + rc -= 0.00478 * math.sin(radians(-1934.136 * t + 125.04)) + return radians(rc) + +def mean_ecliptic_obliquity(t): + rc = 0.001813 * t ** 3 - 0.00059 * t ** 2 - 46.815 * t + 21.448 + rc = 26 + rc / 60 + rc = 23 + rc / 60 + return radians(rc) + +def corrected_mean_ecliptic_obliquity(t): + rc = -1934.136 * t + 125.04 + rc = 0.00256 * math.cos(radians(rc)) + rc += degrees(mean_ecliptic_obliquity(t)) + return radians(rc) + +def solar_declination(t): + rc = math.sin(corrected_mean_ecliptic_obliquity(t)) + rc *= math.sin(sun_apparent_longitude(t)) + return math.asin(rc) + +def equation_of_time(t): + l = sun_geometric_mean_longitude(t) + e = earth_orbit_eccentricity(t) + m = sun_geometric_mean_anomaly(t) + y = corrected_mean_ecliptic_obliquity(t) + y = math.tan(y / 2) ** 2 + rc = y * math.sin(2 * l) + rc += (4 * y * math.cos(2 * l) - 2) * e * math.sin(m) + rc -= 0.5 * y ** 2 * math.sin(4 * l) + rc -= 1.25 * e ** 2 * math.sin(2 * m) + return 4 * degrees(rc) + +def hour_angle_from_elevation(latitude, declinaton, elevation): + if elevation == 0: + return 0 + rc = math.cos(abs(elevation)) + rc -= math.sin(radians(latitude)) * math.sin(declinaton) + rc /= math.cos(radians(latitude)) * math.cos(declinaton) + rc = math.acos(rc) + return -rc if (rc < 0) == (elevation < 0) else rc; + +def elevation_from_hour_angle(latitude, declinaton, hour_angle): + rc = math.cos(radians(latitude)) + rc *= math.cos(hour_angle) * math.cos(declinaton) + rc += math.sin(radians(latitude)) * math.sin(declinaton) + return math.asin(rc) + +def time_of_solar_noon(t, longitude): + t, rc = julian_centuries_to_julian_day(t), longitude + for (k, m) in ((-360, 0), (1440, -0.5)): + rc = julian_day_to_julian_centuries(t + m + rc / k) + rc = 720 - 4 * longitude - equation_of_time(rc) + return rc + +def time_of_solar_elevation(t, noon, latitude, longitude, elevation): + rc = noon + rc, et = solar_declination(rc), equation_of_time(rc) + rc = hour_angle_from_elevation(latitude, rc, elevation) + rc = 720 - 4 * (longitude + degrees(rc)) - et + + rc = julian_day_to_julian_centuries(julian_centuries_to_julian_day(t) + rc / 1440) + rc, et = solar_declination(rc), equation_of_time(rc) + rc = hour_angle_from_elevation(latitude, rc, elevation) + rc = 720 - 4 * (longitude + degrees(rc)) - et + return rc + +def solar_elevation_from_time(t, latitude, longitude): + rc = julian_centuries_to_julian_day(t) + rc = (rc - float(int(rc + 0.5)) - 0.5) * 1440 + rc = 720 - rc - equation_of_time(t) + rc = radians(rc / 4 - longitude) + return elevation_from_hour_angle(latitude, solar_declination(t), rc) + +def solar_elevation(latitude, longitude, t = None): + rc = julian_centuries() if t is None else t + rc = solar_elevation_from_time(rc, latitude, longitude) + return degrees(rc) + +def sun(latitude, longitude, t = None, low = -6.0, high = 3.0): + t = julian_centuries() if t is None else t + e = solar_elevation(latitude, longitude, t) + e = (e - low) / (high - low) + return min(max(0, e), 1) + |