/** * Copyright © 2014 Mattias Andrée (m@maandree.se) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . */ package algorithms.sorting.other; import java.util.*; /** * Topological sorting class. There are a few ways to perform * a topological sort, this class implements an topological * sort with advisory dependencies and strict dependencies. * Dependencies are broken when there are cyclic dependencies, * but if the dependency is strict rather than advisory, the * algorithm fails. Additionally, this this, implementation * uses two input parameters, a map from items to sets of * dependencies, and a map from items, to a set of strict * dependencies. The strict dependencies must appear in both * of the sets, whilst the advisory dependencies must only * appear in the first set of dependencies. This implemention * tries to minimise the number of transversially broken * dependencies. It is advisable to use both hash based maps * and sets. * * @param The data type that has been sorted */ public class TopologicalSort { /** * Constructor */ private TopologicalSort() { /* Do nothing */ } /** * List of missing dependencies. There may be duplicates, * see {@link #missingDependent}. */ public ArrayList missingDependency = new ArrayList(); /** * List of items with missing dependencies. For any give index * i, the element in {@link #missingDependency} with index i * is required by the element with index i in this list. */ public ArrayList missingDependent = new ArrayList(); /** * The items in topological order */ public ArrayList order = new ArrayList(); /** * If an items exists as a key in this map it has been used * to break a cyclic dependency. The associated value of a * key is a set of all direct dependencies that will appear * later in the topologically ordered list {@link #order}. */ public HashMap> breaks = new HashMap>(); /** * Whether the topological sort was successful, i.e., not * absolute dependencies needed to be broken. If this value * is {@code false}, the topologically ordered list and * the map of cyclic dependency breaks may no be complete. */ public boolean successful = false; /** * Topolocally sort data. * * @param dependencies Map for items to their advisory dependencies, will be modified * @param absolutes Map for items to their absolute dependencies * @return A data structure with the result of the topological sort */ @SuppressWarnings("unchecked") public static TopologicalSort tsort(Map> dependencies, Map> absolutes) { TopologicalSort rc = new TopologicalSort(); if (absolutes == null) /* sugar */ absolutes = new HashMap>(); /* Find, list and remove missing dependencies */ { HashMap> removed = new HashMap>(); for (Map.Entry> req_deps : dependencies.entrySet()) { T req = req_deps.getKey(); for (T dep : req_deps.getValue()) if (dependencies.containsKey(dep) == false) { rc.missingDependency.add(dep); rc.missingDependent.add(req); if (removed.containsKey(dep) == false) removed.put(dep, new ArrayList()); removed.get(dep).add(req); } } for (Map.Entry> remove_reqs : removed.entrySet()) { T remove = remove_reqs.getKey(); for (T req : remove_reqs.getValue()) dependencies.get(req).remove(remove); } } /* Sort cyclic graph topologically */ { ArrayList removed = new ArrayList(); removed.add(null); while (removed.size() > 0) { /* Sort acyclic graph topologically */ while (removed.size() > 0) { removed.clear(); /* Report and remove items with no unresolved dependency */ T[] dependencies_ = (T[])(new Object[dependencies.size()]); /* needed to avoid concurrent modification */ int i = 0; for (T key : dependencies.keySet()) dependencies_[i++] = key; for (T item : dependencies_) if (dependencies.get(item).size() == 0) { rc.order.add(item); removed.add(item); dependencies.remove(item); } /* Remove reported items from dependency lists */ for (Map.Entry> req_deps : dependencies.entrySet()) { T req = req_deps.getKey(); Set deps = req_deps.getValue(); for (T old : removed) if (deps.contains(old)) deps.remove(old); } } /* Break one cycle with as few transversial dependencies as possible */ if (dependencies.size() > 0) { T best = null; HashSet bestBreaks = null; /* Find best cycle break */ for (Map.Entry> item_deps : dependencies.entrySet()) { T item = item_deps.getKey(); Set queue_ = item_deps.getValue(); Set abs_ = absolutes.get(item); HashSet abs = new HashSet(); if (abs_ != null) for (T elem : abs_) abs.add(elem); HashSet deps = new HashSet(); T[] queue = (T[])(new Object[queue_.size()]); int queue_h = 0, queue_t = 0; for (T elem : queue_) queue[queue_t++] = elem; deps.add(item); boolean bad = false; while (queue_h != queue_t) { T dep = queue[queue_h++]; if (abs.contains(dep)) { bad = true; break; } if (deps.contains(dep)) continue; deps.add(dep); Set extra = dependencies.get(dep); queue_t -= queue_h; System.arraycopy(queue, queue_h, queue = (T[])(new Object[queue_t + extra.size()]), 0, queue_t); queue_h = 0; for (T elem : extra) queue[queue_t++] = elem; if ((extra = absolutes.get(dep)) != null) for (T elem : extra) abs.add(elem); } if (bad) continue; deps.remove(item); if ((best == null) || (bestBreaks.size() > deps.size())) { best = item; bestBreaks = deps; } } /* List cycle break and remove item */ if (best == null) return rc; rc.order.add(best); rc.breaks.put(best, bestBreaks); removed.add(best); dependencies.remove(best); /* Remove item from dependency lists */ for (Map.Entry> item_deps : dependencies.entrySet()) { T item = item_deps.getKey(); Set deps = item_deps.getValue(); if (deps.contains(item) == false) deps.remove(best); } } } } rc.successful = true; return rc; } }