/** * Copyright © 2014 Mattias Andrée (maandree@member.fsf.org) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . */ package algorithms.searching; import java.util.*; /** * Multibinary search class. Multibinary search runs with time complexity * 𝓞(log n + m) and memory complexity 𝓞(log m), where n is the number of * elements in the array to be searched, and m is the number of items for * which to search. Multibinary search locates multiple items in an array * effectively, the items to locate must however be unique and stored in * a sorted list. The algorithm only works with sorted arrays. Identity * search is not possible, only equality search. Null elements are not * allowed, unless the specified compator allows it. * * This algorithm was devised by Mattias Andrée in February of 2013. */ public class MultibinarySearch { /** * List sort order */ public static enum SortOrder { /** * Bigger index, bigger value */ ASCENDING, /** * Bigger index, smaller value */ DESCENDING, } /** * List sort order */ public static enum SearchMode { /** * Look for the index of the easiest to find occurence */ FIND_ANY, /** * Look for the index of the first occurence */ FIND_FIRST, /** * Look for the index of the last occurence */ FIND_LAST, /** * Look for both the index of the fist occurence and of the last occurence.
* The returned value will be {@code (LAST << 32) | FIRST}. */ FIND_FIST_AND_LAST, } £>for T in boolean char byte short int long float double T T++; do . src/comparable /** * Find the indices of multiple items in a list, with time * complexity 𝓞(log n + m) and memory complexity 𝓞(log m) * * @param items Sorted list of unique items for which to search, the number * of elements is named ‘m’ in the complexity analysis * @param array Sorted list in which to search, the number of elements * is named ‘n’ in the complexity analysis * @param order The lists' element order * @param mode The search mode * @return Two arrays of integer arrays, the 0:th being the indices * of items, the 1:th being their positions. That is, * two separate arrays, not and array of pairs. The expected * position is returned inverted if it was not found, the * position it whould have upon be inserted, otherwise the * position is returned as an index if the mode does not * specify anything else. */ public static £(fun "long[][]" indexOf "${T}[] items, ${Tarray} array, SortOrder order, SearchMode mode") { if (mode != SearchMode.FIND_ANY) throw new Error("Mode not implemented"); /* TODO */ if (order != SortOrder.ASCENDING) throw new Error("Order not implemented"); /* TODO */ BinarySearch.SearchMode mode_ = BinarySearch.SearchMode.FIND_ANY; BinarySearch.SortOrder order_ = BinarySearch.SortOrder.ASCENDING; int m = items.length, lb_m = 1; long[][] rc = new long[2][m]; if (m == 0) return rc; if ((m & 0xFFFF0000) != 0) { lb_m |= 16; m >>= 16; } if ((m & 0x0000FF00) != 0) { lb_m |= 8; m >>= 8; } if ((m & 0x000000F0) != 0) { lb_m |= 4; m >>= 4; } if ((m & 0x0000000C) != 0) { lb_m |= 2; m >>= 2; } if ((m & 0x00000002) != 0) { lb_m += 1; } int[][] minomax = new int[4][lb_m]; int n = array.length - 1; m = items.length - 1; int rc_i = 0; int mm_i = 0; int min, max, amin = 0, amax = 0, lastmax, lastamax; minomax[0][mm_i] = 0; minomax[1][mm_i] = m; minomax[2][mm_i] = 0; minomax[3][mm_i++] = n; while (mm_i-- > 0) { min = minomax[0][mm_i]; max = minomax[1][mm_i]; amin = minomax[2][mm_i]; amax = minomax[3][mm_i]; while (max != min) { lastmax = max; lastamax = amax; rc[0][rc_i] = max = min + ((max - min) >>> 1); rc[1][rc_i++] = amax = (int)(BinarySearch.indexOf(items[max], array, order_, mode_, amin, amax£{Targ_name})); if (amax < 0) amax = ~amax; minomax[0][mm_i] = max + 1; minomax[1][mm_i] = lastmax; minomax[2][mm_i] = amax + 1; minomax[3][mm_i++] = lastamax; } } max = m; amax = (int)(BinarySearch.indexOf(items[max], array, order_, mode_, amin, amax£{Targ_name})); rc[0][rc_i] = max; rc[1][rc_i++] = amax; return rc; } £>done }