aboutsummaryrefslogtreecommitdiffstats
path: root/src/algorithms/searching/MultibinarySearch.java
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/algorithms/searching/MultibinarySearch.java169
1 files changed, 169 insertions, 0 deletions
diff --git a/src/algorithms/searching/MultibinarySearch.java b/src/algorithms/searching/MultibinarySearch.java
new file mode 100644
index 0000000..841a4eb
--- /dev/null
+++ b/src/algorithms/searching/MultibinarySearch.java
@@ -0,0 +1,169 @@
+/**
+ * Copyright © 2014 Mattias Andrée (maandree@member.fsf.org)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU Affero General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU Affero General Public License for more details.
+ *
+ * You should have received a copy of the GNU Affero General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+package algorithms.searching;
+
+import java.util.*;
+
+
+/**
+ * Multibinary search class. Multibinary search runs with time complexity
+ * 𝓞(log n + m) and memory complexity 𝓞(log m), where n is the number of
+ * elements in the array to be searched, and m is the number of items for
+ * which to search. Multibinary search locates multiple items in an array
+ * effectively, the items to locate must however be unique and stored in
+ * a sorted list. The algorithm only works with sorted arrays. Identity
+ * search is not possible, only equality search. Null elements are not
+ * allowed, unless the specified compator allows it.
+ *
+ * This algorithm was devised by Mattias Andrée in February of 2013.
+ */
+public class MultibinarySearch
+{
+ /**
+ * List sort order
+ */
+ public static enum SortOrder
+ {
+ /**
+ * Bigger index, bigger value
+ */
+ ASCENDING,
+
+ /**
+ * Bigger index, smaller value
+ */
+ DESCENDING,
+
+ }
+
+ /**
+ * List sort order
+ */
+ public static enum SearchMode
+ {
+ /**
+ * Look for the index of the easiest to find occurence
+ */
+ FIND_ANY,
+
+ /**
+ * Look for the index of the first occurence
+ */
+ FIND_FIRST,
+
+ /**
+ * Look for the index of the last occurence
+ */
+ FIND_LAST,
+
+ /**
+ * Look for both the index of the fist occurence and of the last occurence.<br>
+ * The returned value will be {@code (LAST << 32) | FIRST}.
+ */
+ FIND_FIST_AND_LAST,
+
+ }
+
+
+
+£>for T in boolean char byte short int long float double T T++; do . src/comparable
+ /**
+ * Find the indices of multiple items in a list, with time
+ * complexity 𝓞(log n + m) and memory complexity 𝓞(log m)
+ *
+ * @param items Sorted list of unique items for which to search, the number
+ * of elements is named ‘m’ in the complexity analysis
+ * @param array Sorted list in which to search, the number of elements
+ * is named ‘n’ in the complexity analysis
+ * @param order The lists' element order
+ * @param mode The search mode
+ * @return Two arrays of integer arrays, the 0:th being the indices
+ * of items, the 1:th being their positions. That is,
+ * two separate arrays, not and array of pairs. The expected
+ * position is returned inverted if it was not found, the
+ * position it whould have upon be inserted, otherwise the
+ * position is returned as an index if the mode does not
+ * specify anything else.
+ */
+ public static £(fun "long[][]" indexOf "${T}[] items, ${Tarray} array, SortOrder order, SearchMode mode")
+ {
+ if (mode != SearchMode.FIND_ANY)
+ throw new Error("Mode not implemented"); /* TODO */
+ if (order != SortOrder.ASCENDING)
+ throw new Error("Order not implemented"); /* TODO */
+
+ BinarySearch.SearchMode mode_ = BinarySearch.SearchMode.FIND_ANY;
+ BinarySearch.SortOrder order_ = BinarySearch.SortOrder.ASCENDING;
+
+ int m = items.length, lb_m = 1;
+ long[][] rc = new long[2][m];
+
+ if (m == 0)
+ return rc;
+
+ if ((m & 0xFFFF0000) != 0) { lb_m |= 16; m >>= 16; }
+ if ((m & 0x0000FF00) != 0) { lb_m |= 8; m >>= 8; }
+ if ((m & 0x000000F0) != 0) { lb_m |= 4; m >>= 4; }
+ if ((m & 0x0000000C) != 0) { lb_m |= 2; m >>= 2; }
+ if ((m & 0x00000002) != 0) { lb_m += 1; }
+
+ int[][] minomax = new int[4][lb_m];
+ int n = array.length - 1;
+ m = items.length - 1;
+
+ int rc_i = 0;
+ int mm_i = 0;
+ int min, max, amin = 0, amax = 0, lastmax, lastamax;
+
+ minomax[0][mm_i] = 0;
+ minomax[1][mm_i] = m;
+ minomax[2][mm_i] = 0;
+ minomax[3][mm_i++] = n;
+
+ while (mm_i-- > 0)
+ {
+ min = minomax[0][mm_i];
+ max = minomax[1][mm_i];
+ amin = minomax[2][mm_i];
+ amax = minomax[3][mm_i];
+
+ while (max != min)
+ {
+ lastmax = max;
+ lastamax = amax;
+ rc[0][rc_i] = max = min + ((max - min) >>> 1);
+ rc[1][rc_i++] = amax = (int)(BinarySearch.indexOf(items[max], array, order_, mode_, amin, amax£{Targ_name}));
+ if (amax < 0)
+ amax = ~amax;
+
+ minomax[0][mm_i] = max + 1;
+ minomax[1][mm_i] = lastmax;
+ minomax[2][mm_i] = amax + 1;
+ minomax[3][mm_i++] = lastamax;
+ }
+ }
+
+ max = m;
+ amax = (int)(BinarySearch.indexOf(items[max], array, order_, mode_, amin, amax£{Targ_name}));
+ rc[0][rc_i] = max;
+ rc[1][rc_i++] = amax;
+
+ return rc;
+ }
+£>done
+}
+